We are now entering a tremendously exciting phase in our quest to understand the human brain. With large-scale programmes like the US BRAIN Initiative and the EU Human Brain Project, there is currently a huge appetite for new neurotechnologies and applications. We have already witnessed the impact made by devices such as cochlear implants and deep brain stimulators, with hundreds of thousands of individuals that have and are benefitting every day. Soon, similar assistive technology will emerge for the blind, those suffering from epilepsy, and many others.

Visualisation of Electrical Activity in the Nervous System

Visualising electrical activity within the brain: Next generation neural interfaces will enable direct, "high resolution" communication with the nervous system.

With the current capability in microtechnology, never before have there been so many opportunities to develop devices that effectively interface with the nervous system. Such devices are often referred to as neural interfaces or brain-machine interfaces and range from wearable surface-electrode systems to fully implantable devices. The interface typically uses an electrical connection (i.e. electrodes) to achieve the neural recording and/or stimulation utilising a variety of techniques, including: electroencephalography (EEG), electromyography (EMG), electrocorticography (ECoG) and direct interfacing using cuff electrodes or penetrating microelectrode arrays (MEAs). Neural prostheses use such interfaces to bypass dysfunctional pathways in the nervous system, by applying electronics to replace lost function.

Our research at the Next Generation Neural Interfaces Lab is aimed, ultimately at developing such devices to provide neural rehabilitation by exploiting the integration capability and scalability of modern semiconductor technology.