Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • CONFERENCE PAPER
    Heiles B, Zadrazil I, Matar OK,

    The effect of surfactant on stratified and stratifying gas-liquid flows

    , American Physical Society - Division of Fluid Dynamics

    We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow.

  • CONFERENCE PAPER
    Ibarra R, Zadrazil I, Markides CN, Matar OKet al.,

    Towards a Universal Dimensionless Map of Flow Regime Transitions in Horizontal Liquid-Liquid Flows

    , 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
  • CONFERENCE PAPER
    Zadrazil I, Hewitt GF, Matar OK, Markides CNet al.,

    Wave Structure and Velocity Profiles in Downwards Gas-Liquid Annular Flows, American Physical Society

    , American Physical Society - Division of Fluid Dynamics

    A downwards flow of gas in the core of a vertical pipe, and of liquid in the annulus between the pipe wall and the gas phase is referred to as a ``downwards annular flow'' (DAF). DAFs are conventionally described in terms of short-lived, small-amplitude ``ripples,'' and large-amplitude, high-speed ``disturbances.'' We use a combination of Laser Induced Fluorescence (LIF), Particle Image and Tracking Velocimetry (PIV, PTV) to study DAFs. We demonstrate through these techniques that the liquid films become progressively more complex with increasing liquid Reynolds number (ReL), while a similar increase of complexity is observed for increasing gas Reynolds number (ReG). Disturbance waves are observed for low and high ReL, and ripples for intermediate ReL. Additionally, a high degree of rolling breakdown of disturbance waves is observed in falling films at the highest ReL, which is a source of bubble entrainment into the film body. Our results will comprise: (i) statistical data on film thickness, and (ii) wave frequency, velocity, wavelength. In addition, a qualitative (e.g. re-circulation zones) and quantitative (e.g. mean/rms velocity profiles) velocity characterisation of the film flows will be presented.

  • CONFERENCE PAPER
    Zadrazil I, Markides CN, Hewitt GF, Matar OKet al.,

    Structure and Velocity Profiles in Downwards Gas-Liquid Annular Flow

    , 8th International Conference on Multiphase Flow

    The downwards co-current gas-liquid annular flows inside a vertically oriented pipe have been experimentally investigated.The measurements and characterisation were performed using advanced optical non-intrusive laser-based techniques, namelyLaser Induced Fluorescence, and Particle Image/Tracking Velocimetry. The investigated conditions were in the range of ReL =306 – 1,532 and ReG = 0 – 84,600. Temporal film thickness time traces were constructed using the Laser Induced Fluorescenceimages. Based on these, the wave frequency was evaluated using direct wave counting approach and power spectral densityanalysis. Additionally, qualitative PIV observations revealed the presence of recirculation zones within a wave front ofdisturbance waves.

  • CONFERENCE PAPER
    Zadrazil I, Markides CN, Matar OK, Naraigh LO, Hewitt GFet al.,

    Characterisation of Downwards Co-Current Gas-Liquid Annular Flows

    , Turbulence, Heat and Mass Transfer 7, Publisher: Begell House

    The hydrodynamic characteristics of downwards co-current two-phase (gas-liquid) flows inside avertical tube (ID = 32 mm) have been investigated experimentally. Advanced optical techniques, namely LaserInduced Fluorescence and Particle Tracking Velocimetry, were utilised for the characterisation of these flowsover a wide range of gas and liquid superficial velocities (U_G = 0 – 34 m/s and U_L = 0.034 – 0.182 m/s),corresponding to Reynolds numbers Re_G = 0 – 84,600 and Re_L = 1,230 – 6,130. A flow regime map, whichcontains a previously unreported flow regime, is constructed based on the flow observations. The quantitativeanalysis of the liquid films allows the generation of film thickness, wave frequency, bubble size, bubblefrequency and velocity profile data. It was found that the different observed flow regimes posses a characteristiccombination of the investigated quantitative parameters. A model, based on modified mixing-length theory, wasused to predict the liquid film velocity profiles and good agreement was found with the experimental results.

  • CONFERENCE PAPER
    Zadrazil I, Markides CN, Naraigh LO, Matar OKet al.,

    Dynamics of Turbulent Falling Films

    , American Physical Society - Division of Fluid Dynamics

    The dynamics of laminar falling films have received considerable attention over the past several decades. In contrast, turbulent falling films have been the subject of far fewer studies. We seek to redress this balance by studying the stability of falling films which have already undergone a transition from a laminar to a turbulent flow regime. We derive a uniform-film base-state for this flow by assuming the averaged turbulent velocity field to be steady and fully-developed, and by employing a modified version of mixing-length theory. The latter features an interpolation function for the eddy viscosity, and van Driest-type functions for turbulence-damping near the wall and interface regions. The predicted base-state streamwise velocity component is in good agreement with experimental data. A linear stability analysis of this base-state is then carried out by solving a modified version of the Orr-Sommerfeld equation. Our results suggest that the unstable mode is a long-wave one. This provides motivation for the derivation of long-wave equations for the nonlinear evolution of the film.

  • CONFERENCE PAPER
    Zadrazil I, Matar OK, Markides CN,

    Phase-locked measurements of gas-liquid horizontal flows

    , American Physical Society - Division of Fluid Dynamics

    A flow of gas and liquid in a horizontal pipe can be described in terms of various flow regimes, e.g. wavy stratified, annular or slug flow. These flow regimes appear at characteristic gas and liquid Reynolds numbers and feature unique wave phenomena. Wavy stratified flow is populated by low amplitude waves whereas annular flow contains high amplitude and long lived waves, so called disturbance waves, that play a key role in a liquid entrainment into the gas phase (droplets). In a slug flow regime, liquid-continuous regions travel at high speeds through a pipe separated by regions of stratified flow. We use a refractive index matched dynamic shadowgraphy technique using a high-speed camera mounted on a moving robotic linear rail to track the formation and development of features characteristic for the aforementioned flow regimes. We show that the wave dynamics become progressively more complex with increasing liquid and gas Reynolds numbers. Based on the shadowgraphy measurements we present, over a range of conditions: (i) phenomenological observations of the formation, and (ii) statistical data on the downstream velocity distribution of different classes of waves.

  • CONFERENCE PAPER
    Zadrazil I, Matar OK, Markides CN,

    Slug front gas entrainment in gas-liquid two-phase horizontal flow using hi-speed slug-tracking

    , American Physical Society - Division of Fluid Dynamics

    A gas-liquid flow regime where liquid-continuous regions travel at high speeds (i.e. slugs) through a pipe separated by regions of stratified flow (i.e. elongated bubbles) is referred to as a ``slug flow.'' This regime is characterised by the turbulent entrainment of gas into the slug front body. We use a high-speed camera mounted on a moving robotic linear rail to track the formation of naturally occurring slugs over 150 pipe diameters. We show that the dynamics of the slugs become progressively more complex with increasing liquid and gas Reynolds numbers. Based on the slug- tracking visualization we present, over a range of conditions: (i) phenomenological observations of the formation and development of slugs, and (ii) statistical data on the slug velocity and gas entrainment rate into the slug body.

  • CONFERENCE PAPER
    Zadrazil I, Matar OK, Markides CN,

    On the Frequency of Large Waves in Vertical Gas-Liquid Annular Flow

    , American Institute of Chemical Engineers
  • CONFERENCE PAPER
    Zhao Y, Zadrazil I, Markides CN, Matar OK, Hewitt GFet al.,

    Wave structure in Upwards Gas-Liquid Annular Flows

    , American Physical Society - Division of Fluid Dynamics

    A two-phase flow system in a vertical pipe in which the liquid around the pipe periphery is lifted by the gas core is referred to as an ``upwards annular flow'' (UAF). UAFs have a complex interfacial structure, which consists of short-lived, small-amplitude ``ripple'' waves, and large amplitude, high-speed ``disturbances'' waves. Two sets of flush-mounted electrically conducting probes together with axial view photography were used to study UAFs. The overall wave frequency decreased with increasing distance from the inlet until saturation. Disturbance waves were observed over a wide range (both low and high) of liquid Reynolds numbers, ReL, while ripples were observed at lower ReL. Disturbance ``bursts,'' which are a source of liquid entrainment into the gas core, were also observed, with increasing frequency at progressively higher ReL. The waves appeared more chaotic near the inlet, which hindered the formation of the correlated waves. As the small (ripple) waves coalesced into bigger waves with increasing distance from the inlet, the waves became more coherent around the pipe periphery. The results that will be presented comprise: (i) statistical film thickness data, and (ii) wave, frequency, velocity, and wavelength.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=689&limit=10&respub-action=search.html Current Millis: 1490498716055 Current Time: Sun Mar 26 04:25:16 BST 2017